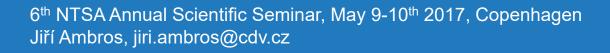
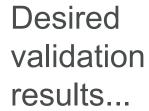


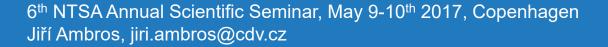
Which validation is more valid?


Jiří Ambros


CDV – Transport Research Centre Czech Republic

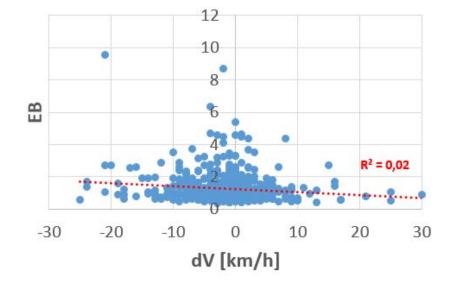
Introduction

- How to collect data for validation?
- A potential surrogate X in road network...
 - Overall validation (correlate X and accident frequency)
 - Define safe/unsafe roads, collect X, estimate cut-off value
 - Define a cut-off value and check the relationship to safety
 - o Naturalistic driving study (safe behaviour \rightarrow safe X values)



Examples

- Floating car data
 - Company vehicle fleets, GPS + IMU
- Example analyses
 - o Speeds
 - Accelerations
 - o Jerks


Example 1: Speed consistency

- Theory: unsafe (unexpected) curves → hard braking
 - o Speed consistency $dV = V_{\text{curve}} V_{\text{tangent}}$
 - \circ Negative dV = braking (the less dV, the more risk)
- GPS data in 509 tangent-curve pairs (with 100+ drives)
- Safety level (6 yrs acc.) estimate adjusted by accident prediction model → empirical Bayes estimate (EB)

Approach 1: Overall validation

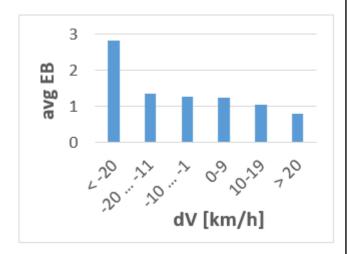
- Relationship between dV and EB?
- No correlation



Approach 2: Safe roads → **safe consistency?**

- Using pivot tables
- The higher risk, the smaller sample
- Sign of trend, but no clear dV threshold

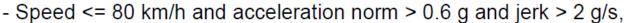
EB	avg dV	n
0-1	-1,27	252
1-2	-1,74	190
2-3	-3,60	42
3-4	-2,50	12



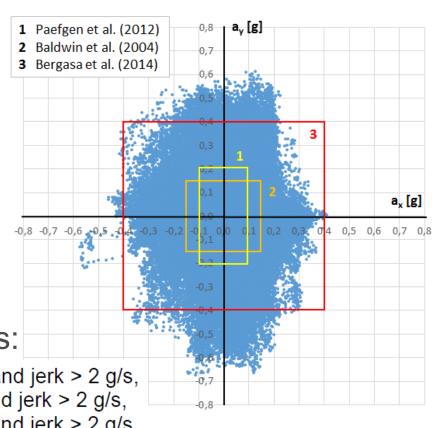
Approach 3: Is there a cut-off value of *dV*?

- Sample again limited on borders
- Cut-off at –20 km/h, consistent with past research

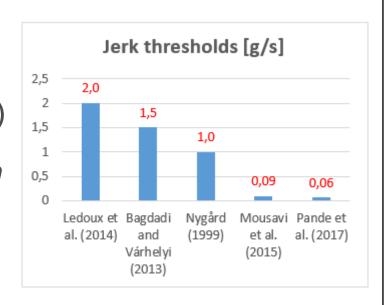
dV	avg EB	n
<-20	2,84	6
-2011	1,35	25
-101	1,27	272
0-9	1,22	190
10-19	1,04	12
> 20	0,80	4


Example 2: Accelerations

a_x ... braking/accelerating


a_v ... left/right turns

Combined with speed and jerks:


- Speed > 80 km/h and acceleration norm > 0.5 g and jerk > 2 g/s,
- Speed > 100 km/h and acceleration norm > 0.4 g and jerk > 2 g/s.

Example 3: Jerks

Rate of change of deceleration (*da/dt*)

21 jerk value thresholds were evaluated in the sensitivity analysis (...) The jerk-rate was then compared to the crash rate for each segment (Mousavi et al., 2015)

- o The threshold value X was varied from 0.50 ft/s³ to 2.75 ft/s³ with an increment of .25 ft/s³ (Pande et al., 2017) ... 10 thresholds
- Theory-based or data-based ?

Summary

Larger ("cheap") studies

- Using other party datasets, such as vehicle fleet data
- One can remove outliers, select subsets...

Smaller ("expensive") studies

- Not network-wide
- For example traffic conflict studies: mostly 1 site only

Conclusions Discussion

"Which validation is more valid?"

- Validation approach depends on amount of available data
- Big data → "data mining"
- Small "expensive" data → ???
- Product / process validation

Thank you for your attention

Jiří Ambros

jiri.ambros@cdv.cz

CDV – Transport Research Centre

Líšeňská 33a, 636 00 Brno, Czech Republic

www.cdv.cz/en/